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New telecommunications technologies such as digital switches and
fiber optics allow telephone companies to provide a wide range of
new services. However, the provision of these new technologies
complicates the regulation of telephony, especially the pricing of
services. When a local telephone company provides both basic
services and new competitive services, there are incentives for
cross-subsidies and predatory pricing?. The telephone company may
set prices below costs for the new services and try to recover
these costs from ratepayers in requlated basic services.

An inevitable question in addressing such issues is the calculation
of the marginal cost of services. For some regulated
telecommunications companies, long run marginal (incremental) costs
(LRIC)® are used as a basis for efficient pricing as well as for
examining cross subsidies and predatory pricing. Since most
services in the telecommunications network require lumpy and
recursive investment, the relevant cost for pricing services has
often been the long run marginal cost which allows adjustment of
all input factors.

In this paper I present a model for deriving long run marginal
costs for services requiring lumpy investments. Although the model
is developed for investment in digital switches, the analysis can
be extended to other lumpy investment such as airports, bridges,
highways, and other infrastructure.

Most telephone companies use the capacity cost method as a
surrogate for long run marginal cost. The capacity cost method is
simple in principle. The marginal unit for the capacity cost is
the marginal equipment or the capacity of the marginal equipment.

' The views expressed in the paper do not necessarily reflect
those of the Commission or other Commission Staff.
° See Faulhaber (1975) on cross subsidies issue.

> We use the terms long run incremental cost (LRIC) and long
run marginal cost interchangeably.



The capacity cost of service is the ratio of the outlay on the
marginal equipment divided by its capacity; capacity is the maximum
unit of service the equipment can provide.

Advocates of the capacity cost method argue that the marginal cost
analysis does not apply to telephony because of the complexity of
the communications network, and that the capacity cost concept is
a good approximation for long run marginal cost. Also, some
authors claim that capacity cost is exactly equal to the long run
marginal cost under reasonable economic assumptions®. Thus, it is
worth clarifying the linkage between capacity cost and long run
marginal cost.

In essence, capacity cost assumes that services are homogeneous and
that demand is perfectly predictable. Thus, the usefulness of the
- capacity cost concept is limited when services differ in their
demand variability or uncertainty. The demand for new services is
more uncertain and volatile than the demand for the basic services.
Consequently, investment decisions under demand uncertainty would
be different from the more certain cases. This observation is
relevant for pricing services because long run marginal costs and
investment decisions are jointly determined.

Consider a telephone company that provides services on a going
concern basis. It faces recursive and lumpy investments because
most services in the telecommunications industry require lumpy
investments: the 1large investment of switched network is an
example. Then, the relevant cost is the forward looking
opportunity cost or the long run marginal cost.

We show that LRIC of a service depends on the demand uncertainty.
Usually, the demand for the basic services is stable, while the
demand for new competitive services is expected to be uncertain.
We show that under this condition, it is more costly to meet the
demand for new service than to serve the basic service, plain old
telephone service (POTS). Consequently, LRIC of new or competitive
services should be higher than that of basic services’.

“ For instance, see Foster and Bowman (1989). Footnote 6 has
a summary of their argument.

> As Stigler (1939) pointed out, plant may be planned to
provide flexibility of output even if this involves higher costs.
For instance, consider the inventory management of a grocery store.
Since demand for groceries fluctuates during the week and the
seasons, store managers keep inventories. Store managers pay when
goods are delivered to the store, and the interest cost is incurred
until the good is sold. This interest cost is part of the price
consumers pay. Thus, goods with fluctuating demand will incur
higher interest costs and price markups than those of goods with
predictable demand.
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In Section I, Boiteux’s peak-load pricing is discussed which
introduces the capacity cost method. Section II develops a model
for recursive investments for a community where the demand for
services grows over time. By allowing all possible adjustments in
input factors (plant facilities and operating costs), LRIC reflects
the firr’s intertempcral decisions. Th~ mode® intrrduces the
demand uncertainty and the firm’s investment decision explicitly.
Consequently, investment schedules and long run marginal costs are
jointly determined.

Section III derives the long run incremental cost (LRIC) for a
reasonable investment strategy under uncertain demand. Conditions
are examined under which the capacity cost is a good approximation
for LRIC. These conditions indicate that capacity cost can be a
poor surrogate for the 1long run marginal cost (LRIC) for
investments that require high fixed costs and face demand
uncertainty. Section IV provides concluding remarks.

I. Capacity Costs

This section discusses the capacity cost concept by Marcel Boiteux
and others. The main idea is summarized in Boiteux (1960). We
start with an example that will show the deceptive simplicity of
the "capacity cost." Suppose one unit of equipment (say a digital
switch) costs one million dollars and can serve a maximum of 10,000
units of services (say access lines). For simplicity, operating
costs are ignored at this level of analysis. The capacity cost of
access line service is simply $100 per service: $1,000,000+10,000
= $100.

This may be a reasonable way of computing the unit cost of service
when demand remains constant. However, if demand grows over time,
ultimately equipment must be added to meet the growth. If the
equipment comes only in large capacity units, then investment will

be lumpy and recurring. This 1is a realistic assumption for
investment in modern digital switches, highways and other
infrastructure. Unlike in the static case, unused capacity may

exist for some of the time, but the capacity cost cannot tell the
difference: the capacity cost is still $100 because the outlay and
capacity of the equipment have not changed. The question is then,
what is the cost of serving additional demand when there is unused
capacity?

The answer will depend on how the additional demand is viewed. One
response to this question has been that the marginal cost is

zero, and the additional service should be free (assuming zero
operating costs). This would be the case if the additional demand
is temporary and the duration of the additional service is short




enough that the placement schedule of investment remains
undisturbed. But if the additional demand is permanent, the
placement schedule will be affected, and the demand would cause
additional costs to the firm. The long run marginal costs under
this condition of demand are presented in Section II.

Boiteux maintains that marginal costs differ according to whether
they are planned to produce the extra unit "once-only" or to
permanently raise by one unit the "flow" of output. His example of
"extra passenger" is instructive. A train is about to leave, and

there is one empty seat. A passenger arrives. The cost of
carrying this extra passenger is zero (again assuming zero
operation cost). But the same argument is valid for all the empty

seats that there may be in the train. Then, the optimum rate as is
understood by the marginal theory is zero.

To correct the argument of "extra passenger," Boiteux treats

the railway car, not the seat, as the marginal unit, while
implicitly assuming that an optimum size of investment is chosen.
Thus follows Boiteux’s conclusion that the service must be priced
at marginal development cost or the capacity cost.

II. Model for Recursive Lumpy Investment

A dynamic model for lumpy investment is formulated in this section,
and the long run marginal costs are derived under uncertainty in
the following Section III. In developing models for pricing public
utilities, Turvey (1969) emphasized that both cost and output have
time dimensions, and that both may be subject to uncertainty.
Thus, for a cost analysis to be useful in decision-making, it has
to be dynamic (intertemporal) rather than static.

Turvey assumes that all equipment is fully utilized. This may be
a reasonable assumption in many cases, but would be inappropriate
for investment in telecommunications infrastructure which we wish
to analyze, because demand for service is growing over time, and
new equipment has to be added to meet the growing demand. If the
available capacity unit is large relative to the service unit, then
the investment is lumpy and new capacity is underutilized. Future
demand will be met by recursive investment. Given a long-term
forecast for demand, a cost minimizing capacity expansion path is
generated, and the total cost, the present value of the whole
future costs, can be calculated.

Long run marginal cost (LRIC) is calculated by considering two
scenarios. Consider an alternative path of demand growth, and
calculate the total cost of alternative capacity expansion. The
difference between the two costs is the incremental cost in meeting
new demand path.

To be more formal, consider two scenarios: the "baseline" service
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is growing over time (scenario 0), and the "alternative" (scenario
1) is a higher level of service growing at the same rate as the
baseline (see Figure 1). We assume that the demand for services
grows at a rate g (units of service per period). Then, the demand
at time t is :

(1) D, = D, + gt

where, for convenience, we assume the initial demand D, is zero.
To meet the steady growth of demand, there corresponds a schedule
of investment separated by regular time intervals, which we call
the "placement interval" (see Figure 1). (Note that we described
the demand without any consideration of price change. This can be
justified by the principle of stable ratemaking.)

Now the supply side is described. Let "I" denote the outlay on the
equipment; the capacity of the equipment is Q units of services.
For convenience, assume the equipment 1lasts forever, without
depreciating. This assumption does not affect the result. We also
assume that there is no technological change.

Then, the "placement interval" N is given by
N=Q+g

and the time schedule of adding equipment is

t, = 0, t, = N, t, = 2N,

The total cost (TC) of the baseline scenario is the present value
of investment outlays, given the discount rate r,

[0 0]
TC(0) = = I+(1+r) = I*{1 + 1+[(1+r)" - 1]}.

Suppose there is a new arrival of demand, which causes a

permanent demand increment by m units for each period. For
convenience, the incremental demand as a fraction f of the capacity
is

m= fQ, 0 < f < 1.
The demand flow of the alternative schedule is

Df, = £Q + gt.

The alternative scenario requires placement intervals move forward
by fN periods (see Figure 1),

(2) 0, t, = N-fN, t, = 2N-fN,



The total cost of the alternative investment schedule is

TC(1) I*{1 + 1+(1+0)"™ + 1+ (1+m)¥N 4+ L)

I*{1 + (1+)™ = (1+n)" - 1]}.

Then the incremental cost (IC) is the difference between the two
total costs, the present values of the two investment schedules:

(3) IC = TC(1) - TC(0)
= I*x[(1+ )™ - 1]+ (1+0)" - 1].

The present values usually apply to cash flows expressed in nominal
dollar terms. For non-monetary quantities, time discounting is a
dubious practice unless the price is fixed over time. Assuming
stable ratemaking, service price remains a constant. This
assumption Jjustifies present values of demand, though the
assumption is not part of the marginal cost theory.

Based on this qualification, the present value of the demand
increment is

(4) dD = fQ*{1 + 1+(1+r) + 1+(1+r)% + ... } = (£Q)(1l+r)/r.

ITII. LONG RUN INCREMENTAL COST
The long run incremental cost (LRIC) is simply equation (3) divided
by equation (4),

(5) LRIC = IC + dD = rI_ {(1+r)™-1}
(1+4r) £Q{ (1+r)N-1}

In computing LRIC it was assumed that new demand arrives at the
time of new investment (at time 0). However, new demand may arrive
any moment while new equipment will have unused capacity. 1In this
case, the LRIC of services may change over the 1life of the
equipment. When the equipment is first installed, capacity is
relatively abundant and the shadow price of capacity is low;
whereas, as the unused capacity is filled, the shadow price is
higher?®. LRIC 1is higher right before, than right after the
installation of the equipment.

Thus, it is desirable to express LRIC as a function of the arrival

® Note that the shadow price is not zero even if there is
excess capacity. In a static model the shadow price is zero if
there is excess capacity.

3]
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time and size of new demand. Equation (5) provides the incremental
cost right after the installation, and this is denoted by LRIC(0)
if necessary to avoid confusion.

Suppose a new demand (in the same amount fQ) arrives at time t and
stays for good. The present value cf the new demand will be

dD,’ = (1+r) 'dD,

= (1+4r) 'fQ(1+r)/r

where dD, comes from equation (4). If a new demand of size fQ
arrives while there is available capacity, the new demand will be
met by existing capacity. This is the case if the arrival time t
is in the interval 0 < t < N-fN. The investment plan is according
to equation (2), and the LRIC is the incremental cost in equation
(3) divided by the incremental demand dD,’ above,

(6) LRIC(t) IC + dD,’

(1+r)'LRIC(0O) for 0 < t < N-fN.

The long run marginal cost in equation (6) is greater than the LRIC
in equation (5) because of the accumulated interest cost until t
when new demand arrives.

It should be noted that formula (6) holds for new demand arriving
between time periods 0 and N-fN, when there is sufficient capacity
to serve new demand. What if new demand arrives when there is not
sufficient capacity (i.e., the available capacity is less than fQ)?

If the company knows the exact timing of new demand, or if new
demand can be served by an immediate addition of new capacity, an
optimal strategy would be to install new equipment immediately upon
new demand’. This assumption is not realistic, however, because

’. This is the assumption made by Foster and Bowman (1989).
Under this assumption Foster and Bowman show that LRIC is equal to
capacity cost. It is not difficult to provide an intuitive
explanation. In Foster and Bowman, new demand is met either by the
existing capacity or by an immediate addition. In either case, new
demand does not incur interest costs that is the opportunity cost
of any additional capacity above status quo. Consequently, LRIC is
exactly equal to the capacity cost.

The investment plan of Foster and Bowman scenario depends on
the arrival time. If the new demand arrives within the time
interval 0 < t < N-fN, then the investment plan is the same as
equation (2) in Section (II),



adding new capacity in infrastructure like a digital switch
requires adequate lead time and uncertain demand requires capacity
installed in advance.

To analyze investment plans under uncertain demand, we assume
random arrivals of new demand. Under such conditions it is well
known in management science that the firm maintains inventories or
spare capacity to meet demand fluctuations®. stigler (1939) also
observes that plant may be planned to provide flexibility of output
even if this causes additional costs.

The appropriate investment strategy under demand uncertainty is to
install a new capacity (equipment) when the remaining capacity is
fQ, the size of additional demand, whether or not new demand has
actually arrived. This strategy reflects the firm’s "going
concern" nature and optimizing behavior under uncertainty as well.

(A.1) 0, N-fN, 2N-fN, ...

If the new demand arrives after N-fN, then the remaining capacity
is not sufficient to meet the new demand; the size of new demand is

fQ. In this case, Foster and Bowman assumes that new equipment
will be installed immediately. Suppose new demand arrives at
t after time N-fN. Then, the investment schedule will have to

change accordingly,
(A.2) 0, t, 2N - fN, 3N - fN,

Following the same procedure used in the paper, the total cost and
the incremental cost for Foster-Bowman case can be obtained. Then
calculate the ALRIC by integrating over the interval (0, NO) and
obtain the Foster-Bowman result

(A.5) ALRIC = rl
(1+r)Q .

8 See Scarf (1960) and Yoon (1985) for application of (s, S)
inventory models in economics. Consider a retailer who faces
economies of scale in making orders. The (s, S) policy is
characterized by two critical numbers, the low case s and the upper
case S. If the inventory is above the level s, no orders are made;
when inventory falls below s, then orders are made to bring the
inventory level up to S. This feature of (s, S) models is useful
in analyzing recursive lumpy investment. An investment in
equipment involves a fixed cost and the variable cost that depend
on the capacity. The (s, S) optimal policy suggests an optimal
size S for the equipment and a deployment decision of installing a
new capacity if the remaining capacity is s. This model provides
a tractable method of calculating LRIC under uncertain demand
conditions more general than the case treated in this paper.
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If the firm notices there is insufficient capacity to meet possible
new arrival, to avoid the cost of adding capacity on short notice
or losing customers (or failing to serve customers in case of going
concern), the firm installs new capacity in expectation of the
need.

For new demand arriving during the period N-fN and N, LRIC can be
obtained by comparing the two total costs. The placement schedule
is exactly the same as that for the "alternative" case in equation
(2), and the same formula (4) applies for demand (see figure 2).

Assuming that the arrival of new demand is uniformly distributed
over the N periods, the time average of long run incremental cost
(ALRIC) can be calculated. The ALRIC can be considered as a
relevant cost for stable rate making:

1 - N
(7) ALRIC = -‘J LRIC(t) dt
N Jo

rI*( (1+r)M-1)*[(14r)N-1]
N*1n(1+r) (1+r) *fQ*[ (1+r)"-1]

Il

rl [(1+x)™ - 13
(1+r)*Q fN*1n(1+r)

We note that ALRIC is a product of annualized capacity cost,
rI/(1+r)Q, and the correction factor. For an infinitely small
demand increment, ALRIC becomes the annualized capacity cost. By
taking the limit as the fraction f goes to zero, we obtain

(8) 1im ALRIC = [rI+(1+r)]+Q
f-0
= Annualized cost of investment+ capacity
= Annual capacity cost,
where rI+(1l+r) is the annualized cost of the investment. The

implication of the result in (8) is that the cost of serving a
small demand increment is approximately the capacity cost.

IV. Critique of the Capacity Cost Method

A common practice in telecommunications costing has been the
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capacity cost method. The standard argument in support of the
capacity cost method has been that capacity cost is a good
surrogate for 1long run incremental cost (LRIC) because it is
theoretically sound and administratively simple. Perhaps this
would be the case if capacity could be added in small size.

We note that technological conditions in telecommunications
determines not only the kinds of new services to be provided, but
also the market structure and the adequacy of economic cost
concepts.

In Section III it was shown that LRIC is not equal to capacity cost
unless demand is known with certainty. New competitive services
are expected to face uncertain demand conditions than are plain old
telephone service (POTS). The uncertain demand condition is
expressed by the random arrival and the size of new demand, which
reflects the variation of demand over the trend.

Conditions under which capacity cost is a good surrogate for LRIC
can be obtained by examining equation (7), which expresses ALRIC as
a product of capacity cost and the correction factor. The
conditions demonstrate limitations of the capacity cost concept as
costing method for investment in infrastructure. The capacity cost
method will be a reliable device for calculating LRIC only under
the following limited conditions:

(1) the placement period (N) is short;

(2) the size of demand increment (f) is negligible;

(3) there is no technological change.

Condition (1) implies that the capacity of equipment is small
relative to the demand growth. Investment in durable
infrastructure usually fails to meet this condition. Condition (2)
indicates that the demand is stable and predictable, which would be
the case for plain old telephone services (POTS), but not for new
competitive services. Condition (3) matters, but is not discussed
here.

Since the long run marginal cost from equation (7) is a product of
capacity cost and the correction factor, the discrepancy between
marginal cost and capacity cost can be measured by the quantity
(correction factor - 1). This quantity tells the accuracy of
capacity cost as a surrogate for long run marginal cost.

The accuracy or the error margin of capacity cost is reported in
Table 1. Therein, capacity Q is unity (1), and the discount rate
is 10% (r = 0.1). The growth .ate in the baseline is denoted by 9,
and the replacement interval is N = Q/g. The table shows that the
error margin increases with the summary statistic fN. The term fN
can be rewritten as fN = fQ/g: the size of the demand variation
relative to the rate (g) of general demand growth. This is not
surprising because fN is a measure of demand uncertainty in the
model, which can be interpreted as the portion of demand that is
not captured by the trend.
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V. Conclusion

The paper has developed a model for recursive and lumpy investment
in infrastructure, and derived the long run marginal cost (ALRIC)
of service under uncertain demand. The lirkage tc capac®ty cost is
also obtained by expressing ALRIC as a product of capacity cost and
the correction factor.

Two kinds of uncertainty are considered in this paper. The size of
new demand arrival is a measure of demand uncertainty. Another
kind of uncertainty is the timing of arrival. It is assumed the
size of arrival is known, but the arrival time is random. Thus, a
measure of uncertainty in this paper is the variability of the
service away from the trend, which is the baseline.

Under conditions of demand uncertainty, which we believe are
important aspects of new telecommunications services, the firm will
use an investment strategy that adjusts to anticipated uncertainty.
The firm would meet the demand as a going concern; or the firm may
try to maximize expected profit by providing some flexibility in
the form of inventories or excess capacity. In either case, the
strategy is to add new capacity when the firm notices the remaining
capacity is not sufficient to meet expected demand.

From the proposed model, the long run incremental cost of service
is calculated. The main result is that capacity cost is a good
surrogate for LRIC only for stable and predictable services. For
a service with uncertain demand, capacity cost can be a poor
substitute and needs adjusting. For instance, as is demonstrated
in Table 1, if the equipment lasts 20 years (an approximate
lifespan of a switch), and the demand fluctuation of a new service
is expected to be 10% of the equipment’s capacity, then the LRIC is
about 11% higher than the capacity cost.
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Q=1, r = N = Q/g.
<\;\\\~ T 0.05 0.1 0.2 0.4
:
5 % \\\\\ﬁ 1% i1 % 35 % 50%
(N=20 yrs) | (EN=1) (EN=2) (£N=4) (£N=8)
10 % i 13 13 i1 3 37 %
(N=10 yrs) | (£N=0.5) (£N=1) (£N=2) (£N=4)
30 % | 13 13 13 1T %
(N=5 yrs) | (£N=0.25) (£N=0.5) (£N=1) (EN=2)
50 % I 1% 1% 1% 1%
(N=2 yrs) | (£N=0.1) (£N=0.2) (EN=0.4) (£N=0.8)
|

Table 1.b

fN i Correction

5.1 g 1%

072 E 1%

0.4 § 1 %

0.8 i 13

1 E 1%

2 i 11 %

4 i 22 %

8 E 50 %

.
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Figure 2 The model in this paper
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